GeoSOM Suite: A Tool for Spatial Clustering

نویسندگان

  • Roberto Henriques
  • Fernando Bação
  • Victor Sousa Lobo
چکیده

The large amount of spatial data available today demands the use of data mining tools for its analysis. One of the most used data mining techniques is clustering. Several methods for spatial clustering exist, but many consider space as just another variable. We present in this paper a tool particularly suited for spatial clustering: the GeoSOM suite. This tool implements the GeoSOM algorithm, which is based on Self-Organizing Maps. This paper describes this tool, and shows that it is adequate for exploring spatial data.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exploratory geospatial data analysis using the GeoSOM suite

Clustering constitutes one of the most popular and important tasks in data analysis. This is true for any type of data, and geographic data is no exception. In fact, in geographic knowledge discovery the aim is, more often than not, to explore and let spatial patterns surface rather than develop predictive models. The size and dimensionality of the existing and future databases stress the need ...

متن کامل

Contextual neural gas for spatial clustering and analysis

This study aims to introduce and discuss contextual Neural Gas (CNG), a variant of the Neural Gas algorithm, which explicitly accounts for spatial dependencies within spatial data. The main idea of the CNG is to map spatially close observations to neurons, which are close with respect to their rank distance. Thus, spatial dependency is incorporated independently from the attributes of the data ...

متن کامل

The Geodesic Self-Organizing Map and Its Error Analysis

The Self-Organizing Map (SOM) is one of the popular Artificial Neural Networks which is a useful in clustering and visualizing complex high dimensional data. Conventional SOMs are based on the two-dimensional (2D) grid structure, which usually results in less accurate representation of the data. Several SOMs using spherical data structures have been proposed to remove the “border effect”. In th...

متن کامل

تجمع بیماری در مقیاسی وسیع و کاربرد آن در مطالعات اپیدمیولوژی و بهداشت

Spatial autocorrelation statistics provide summary information about the spatial arrangement of data in a map. In fact, these statistics compare neighboring area values in order to assess the level of large scale clustering. Whenever a large number of neighboring areas have either relatively large or relatively small values, large scale clustering may be detected. Detecting such clustering is a...

متن کامل

Spherical self-organizing map using efficient indexed geodesic data structure

The two-dimensional (2D) Self-Organizing Map (SOM) has a well-known "border effect". Several spherical SOMs which use lattices of the tessellated icosahedron have been proposed to solve this problem. However, existing data structures for such SOMs are either not space efficient or are time consuming when searching the neighborhood. We introduce a 2D rectangular grid data structure to store the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009